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Fragment shader operations

Every pixel acts like an SIMD processor

actually, some fixed number are processed in parallel

Fragment processor could perform simple straight-line operations
and conditionals (no looping)
(limited) texture memory for local storage
Each pixel processor could do a simple reduce (add, blend)
Computation initiated by “rendering call” from host machine.
All computation resides on GPU from start of the vertex pipeline
Computation proceeds in passes: output could be rendered or
stored in memory for next pass.
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GPU Voronoi Diagrams

For each point, render a cone of colored triangles

Use many triangles to approximate smooth cone
Use shading to encode distance as color value

Fragment processor at (x, y) receives stream of pixels p1, p2, . . .

min← 0
if depth(pi) < min then

{GPU Z-test}
min = depth(pi) {GPU blending operation}
color(x, y) = color(pi)

end if

Rendering engine is the mapper
Gathering happens automatically, with fixed key (x, y)
Fragment processors implement reduce
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Can we sort on the GPU ?

Compute parallelism is not enough

Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)

External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.

Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements

High-throughput and synchronous



Sorting on the GPU

Can we sort on the GPU ?

Compute parallelism is not enough
Need SIMD structures (find repeated instruction patterns)
External memory methods manage I/O bottlenecks but don’t
exploit compute power.
Plan: Use sorting networks:

Many simple (and local) compute elements
High-throughput and synchronous



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



Bitonic Sorting

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3
7
4
8

6
2

1
5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7
4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8
6

2
1

5

a

b

min(a, b)

max(a, b)

3
7
4
8
6
2
1
5

3

7

4

8

6

2
1

5

Bitonic sort requires log2 n layers, n/2 comparators/layer



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texture

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texture

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



GPU Bitonic Sorting

a0
a3

a1
a2

a0
a3

a1
a2

0 1

3 2

Texturea0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

a0
a3

a1
a2

0 1

3 2

Texture

• Fill 2D array with values
• (for each pass) construct quadrilateral with lookup

values

• Texture hardware locates lookup values, and fragment
program does comparisons

• log2 n passes used to complete the computation



Review



This Lecture

Brief history of GPU model
Simple GPU SIMD model
Examples: Voronoi diagrams, matrix multiplication and sorting



Next Lecture

More simple GPU examples
Toy example of algorithmic view: “GPU as streaming processor”
The CUDA model for modern GPUs
“Hello world” example: matrix multiplication in CUDA



Questions?
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